Neutrinos – Primer paso para descubrir por qué existe la materia

Neutrinos: la Luz Invisible

Primer paso para descubrir por qué existe la materia

Colocada la primera piedra de un gran experimento que puede cambiar nuestro conocimiento del Universo

Más de 1.000 científicos e ingenieros de 30 países, entre ellos España, participan en un gran experimento internacional que puede cambiar nuestro conocimiento del Universo. Tardará una década en construirse, pero la primera piedra de su infraestructura acaba de colocarse en USA. El experimento estudiará las propiedades de las misteriosas partículas llamadas neutrinos, que pueden desvelarnos cómo funciona el Universo y por qué existe la materia.

neutrinos-1.jpg

Los científicos, en el inicio de las obras. Foto: Reidar Hahn, Fermilab.

Con una ceremonia celebrada el viernes pasado en el Laboratorio Subterráneo de Sanford (SURF) en Lead, Dakota del Sur, Estados Unidos, un grupo de dirigentes políticos, científicos e ingenieros de todo el mundo marcó el inicio de la construcción de un gran experimento internacional que podría cambiar nuestro conocimiento del Universo.

Se trata de la instalación Long-Baseline Neutrino Facility (LBNF), que albergará el experimento internacional DUNE(Deep Underground Neutrino Experiment), que será construido y operado por más de 1.000 científicos e ingenieros de 30 países, entre ellos España.

Cuando esté finalizado, LBNF/DUNE será el mayor experimento construido en Estados Unidos para estudiar las propiedades de las misteriosas partículas llamadas neutrinos. Desvelar los misterios de estas partículas podría ayudarnos a explicar mejor cómo funciona el Universo y por qué existe la materia.

Instituciones de decenas de países contribuirán a la construcción de los componentes de DUNE. Este experimento atraerá a estudiantes y jóvenes investigadores de todo el mundo, formando a la próxima generación de científicos que liderará este campo de investigación.

El laboratorio Fermilab, situado a las afueras de Chicago, producirá un haz de neutrinos y lo enviará a 1.300 kilómetros a través de la Tierra hasta SURF, donde se construirán cuatro grandes detectores de una altura de 4 pisos y 70.000 toneladas de argón líquido bajo la superficie para atrapar estos neutrinos.

El misterio de los neutrinos

Los científicos estudiarán las interacciones de los neutrinos en los detectores para entender mejor los cambios que sufren estas partículas cuando viajan de un punto a otro en un abrir y cerrar de ojos.

Desde su descubrimiento hace más de 60 años, los neutrinos han demostrado ser la partícula subatómica más sorprendente, y el que oscile entre tres estados diferentes es una de sus mayores sorpresas. Este hallazgo comenzó con un experimento de neutrinos solares dirigido por Ray Davis en los años 60, y llevado a cabo en la misma mina subterránea que ahora albergará a LBNF/DUNE. Davis obtuvo el Premio Nobel de Física en 2002 por este experimento.

Los científicos de DUNE también buscarán diferencias en el comportamiento entre los neutrinos y sus réplicas de antimateria, los antineutrinos, lo que nos podría dar pistas sobre por qué vivimos en un Universo dominado por la materia. DUNE también observará los neutrinos producidos en las explosiones estelares, lo que revelaría la formación de estrellas de neutrones y agujeros negros. También investigará si los protones viven para siempre o se desintegran eventualmente en otras partículas, acercándonos a la realización del sueño de Einstein: la Teoría de la Gran Unificación.

Pero antes se tiene que construir la instalación, algo que ocurrirá en la próxima década. Los operarios comenzarán la construcción excavando más de 870.000 toneladas de rocas para crear las enormes cavernas subterráneas del detector DUNE. Mientras, se construyen grandes prototipos de DUNE en el laboratorio europeo de física de partículas (CERN), uno de los mayores socios del proyecto, y la tecnología desarrollada para estas versiones más pequeñas se probará y ampliará cuando se fabriquen los grandes detectores de DUNE.

Esta instalación está financiada por la Oficina de Ciencia del Departamento de Energía de los Estados Unidos, en colaboración con el CERN y otros socios de 30 países. Los científicos que participan en DUNE proceden de instituciones científicas de Armenia, Brasil, Bulgaria, Canadá, Chile, China, Colombia, Corea del Sur, Estados Unidos, España, Finlandia, Francia, Grecia, Holanda, India, Irán, Italia, Japón, Madagascar, México, Perú, Polonia, República Checa, Rumanía, Rusia,  Suecia, Suiza, Turquía, Ucrania y Reino Unido.

neutrinos-2

Fermilab, situado a las afueras de Chicago, producirá un haz de neutrinos y lo enviará a 1.300 kilómetros a través de la Tierra hasta SURF, en Dakota del Sur. Imagen: Fermilab.

Amplia participación española

Cuatro centros de investigación españoles forman parte de la colaboración científica del experimento DUNE: el Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), el Instituto de Física Teórica (IFT, UAM-CSIC), el Instituto de Física de Altas Energías (IFAE) y el Instituto de Física Corpuscular (IFIC, CSIC-UV).

Sus contribuciones abarcan tanto el diseño y la construcción del experimento, en particular de los detectores que se instalarán en el Laboratorio Subterráneo de Sanford, como los estudios para optimizar la explotación científica del experimento.

Un paso previo y crucial a la construcción de estos detectores en SURF es fabricar prototipos para probar la tecnología. Esta tarea, donde las instituciones españolas también participan, se lleva a cabo en el CERN con la construcción de dos grandes prototipos, llamados ProtoDUNE single phase (ProtoDUNE-SP) y ProtoDUNE dual phase (ProtoDUNE-DP), que se probarán con haces de partículas cargadas a partir de 2018.

Los grupos de investigación en neutrinos del CIEMAT de Madrid y del IFAE de Barcelona son responsables del sistema de detección de luz de ProtoDUNE-DP, formado por 36 fotomultiplicadores que detectan y amplifican la luz producida por las interacciones de partículas en el detector y la convierten en una señal eléctrica.

El CIEMAT lleva a cabo la caracterización de estos fotomultiplicadores para comprender su respuesta ante distintas señales de luz. Además, estos requieren un revestimiento especial que permite cambiar la luz invisible producida en el argón a una longitud de onda visible por los detectores, tarea que realiza el IFAE. El CIEMAT coordina el grupo de trabajo de DUNE dedicado a la detección de neutrinos procedentes de supernovas, donde la señal de luz producida por los fotomultiplicadores es vital al indicar el comienzo de los sucesos originados por la explosión de una supernova.

Desintegración del protón

Por otro lado, el grupo experimental de física de neutrinos del IFIC (CSIC-Universidad de Valencia) lidera el sistema de instrumentación criogénica del detector ProtoDUNE-SP, así como su sistema de monitorización y control de parámetros fundamentales como temperatura, presión, nivel y pureza del argón. Además, el grupo del IFIC coordina el grupo de trabajo de la colaboración DUNE sobre la desintegración del protón, estudiando la sensibilidad del experimento para medir este fenómeno que aún no ha sido detectado. Por otra parte, los científicos e ingenieros del IFIC trabajan también en el desarrollo de herramientas para el análisis de datos de ProtoDUNE-SP y DUNE.

Por su parte, el IFT (Universidad Autónoma de Madrid-CSIC), con contribuciones de miembros del IFIC, lidera la realización de simulaciones sobre las capacidades de DUNE para determinar parámetros aún desconocidos, como el que codifica la posible diferencia de comportamiento entre neutrinos y antineutrinos, clave para entender el exceso de materia sobre antimateria en el Universo. DUNE observará haces de neutrinos con una intensidad y precisión sin precedentes, lo que permitirá explorar respuestas a preguntas fundamentales de la física actual.

Por ejemplo, comprobando la existencia de neutrinos más pesados pero con interacciones aún más débiles que los conocidos hasta ahora, o de nuevas interacciones de los neutrinos. DUNE también podría desentrañar la naturaleza de las misteriosas partículas que forman la materia oscura del Universo, que podrían producirse junto con los neutrinos en el haz producido en Fermilab y ser descubiertas en el detector más cercano. Estas simulaciones son fundamentales en esta etapa del experimento para identificar las posibles modificaciones en el diseño que optimizarían la sensibilidad del mismo

Fuente: Tendencias21

Anuncios

El misterioso fenómeno de la acción fantasmal a distancia

La teoría de la “Horripilante acción fantasmal a distancia” de Einstein

La equivocación de Einstein: Demuestran que la ‘acción fantasmal a distancia’ es real

Pese a las dudas de Albert Einstein, el padre de la física moderna, existe la llamada ‘acción fantasmal a distancia’. Científicos del Instituto Nacional de Normas y Tecnología de EE.UU. (NIST, por sus siglas en inglés) llevaron a cabo un experimento que lo demostró.

Einstein utilizó el término ‘acción fantasmal a distancia’ para referirse a la mecánica cuántica, que describe el extraño comportamiento de las partículas más pequeñas de la materia y la luz. Particularmente tenía en cuenta el entrelazamiento, la idea de que los pares de partículas subatómicas pueden conectarse de forma invisible de una manera que trasciende el tiempo y el espacio. El eminente físico dudó de que fuera posible.

Sin embargo, experimentos de los investigadores del NIST demostraron que el fenómeno existe. Para eso, los científicos crearon fotones y los enviaron a dos lugares diferentes. Luego midieron los fotones y los resultados revelaron que esas partículas ligeras no solo se correlacionaban, sino que también eliminaban todas las demás opciones, para dejar claro que estas correlaciones no pueden ser causadas en el universo “realista” localmente controlado en el que Einstein pensaba que vivíamos.

“No se puede probar la mecánica cuántica, pero el realismo local, o acción local oculto, es incompatible con nuestro experimento. Nuestros resultados están de acuerdo con lo que la mecánica cuántica predice acerca de las acciones espeluznantes compartidas por partículas entrelazadas”, explica uno de los investigadores del NIST, Krister Shalm, en el artículo sobre el experimento.

Fuente: RT SEPA MÁS

Físicos de la Universidad de Washington y de la Universidad de Stony Brook de Nueva York, creen que el fenómeno del entrelazamiento cuántico o como Albert Einstein solía llamarle “acción fantasmal a distancia”, podría estar intrínsecamente asociado a los agujeros de gusano.

Los agujeros de gusano o como formalmente se les conoce “puentes Einstein-Rosen”, son una predicción de la teoría de la relatividad, vienen a ser una especie de pliegue espacio-temporal que en muchas novelas de ciencia ficción son usados para recorrer grandes distancias más rápido que si se viajara a la velocidad de la luz.

La acción fantasmal a distancia o entrelazamiento cuántico, ocurre cuando un par o grupo de partículas se entrelazan de tal forma que el comportamiento de una, determina el comportamiento de la otra, por ejemplo, si en un par de partículas entrelazadas una cambia, lo otra también lo hace de forma simultánea y sin importar que la distancia a la que se encuentren sea de unos pocos metros ¡o de varias galaxias!.

La ciencia ha demostrado que el entrelazamiento cuántico es real, y actualmente se estudia para el desarrollo de computadoras cuánticas y en la elaboración de una especie de encriptamiento cuántico que permitiría una seguridad prácticamente inviolable en las transferencias de datos.

Recientemente, los físicos teóricos Juan Martín Maldacena del Instituto de Estudios Avanzados de Princeton y Leonard Susskind de la Universidad de Stanford, sostenían que los agujeros negros estaban relacionados con el fenómeno de entrelazamiento. Específicamente, que los agujeros de gusano están formados por un par de agujeros negros entrelazados, pero no sólo eso, sino que el fenómeno de entrelazamiento en general está relacionado con los agujeros de gusano, por lo que las partículas entrelazadas, como podrían ser dos electrones, posiblemente estén conectados por agujeros de gusano extremadamente pequeños.

Los agujeros negros se forman cuando una estrella de gran masa, llega al final de sus días convirtiéndose en una gigante roja que colapsa sobre si misma debido a la gran cantidad de fuerza gravitatoria que posee, creando una masa concentrada en un pequeño volumen, una enana blanca, si el proceso de auto-atracción gravitatoria continúa, la enana blanca termina convirtiéndose en un agujero negro, cuyo tamaño puede variar desde el  de un átomo hasta varias veces la masa del Sol. Se llaman agujeros negros porque el campo gravitatorio que poseen es tan descomunal que ni la luz puede escapar a el.

El entrelazamiento de los agujeros negros puede ocurrir de varias formas, por ejemplo, al formarse simultáneamente dos agujeros negros, éstos resultarían automáticamente entrelazados. Otra forma sería que la radiación emitida por un agujero negro sea capturada y luego colapsada en el interior de otro agujero negro, lo que daría como resultado que el agujero negro que capturó esa energía quedara entrelazado con el que suplió la energía.

El trabajo de investigación realizado por Andreas Karch profesor de física de la Universidad de Washington y Kristian Jensen de la Universidad de Stanford, y que fue publicado en la revista Physical Review Letters en el mes de noviembre, resulta interesante porque aporta una herramienta que los científicos podrán usar para desarrollar el anhelado deseo de la física de encontrar una teoría unificadora, es decir que explique todo lo que sucede en el universo, ya que actualmente para ello contamos con dos teorías incompatibles entre sí, la mecánica cuántica que sirve para explicar lo que sucede a escalas ultra diminutas y la teoría de la relatividad, que funciona únicamente para comprender los fenómenos que ocurren a mayor escala.

Fuente: Criptogramas

La Vida Después de la Muerte es Inevitable

Científico afirma que la física cuántica demuestra que la muerte no es real

Mientras a la mayoría de las sociedades se les explican los misterios que nos rodean invocando a un dios o un grupo de dioses, un número de científicos trabajan para ofrecer respuestas objetivas sobre la infinitud del espacio y sobre la maquinaria interna del átomo.

Robert Lanza es un científico de renombre mundial que ha abarcado muchos campos y una de las mentes más brillantes de nuestro tiempo; su teoría del biocentrismo está en sintonía con las tradiciones más antiguas del mundo. Su “nueva teoría del Universo” tiene en cuenta “todos los conocimientos que hemos adquirido durante los últimos siglos”.

Robert Lanza afirma que según la teoría del Biocentrismo la muerte es una ilusión. La vida crea el universo, y no al revés. El espacio y el tiempo no existen en la forma lineal que pensamos que lo hace; y si el espacio y el tiempo no son lineales, entonces la muerte no puede existir en el ‘sentido real’.

Robert Lanza afirma que tiene pruebas para confirmar la existencia más allá de la tumba y se encuentran en la física cuántica; el biocentrismo muestra que la muerte tal como la conocemos es una ilusión creada por nuestra conciencia.

Lanza dice que como seres humanos creemos en la muerte, porque “nos han enseñado que morimos”, y nuestra conciencia asocia la vida con el cuerpo biológico.

El Biocentrismo es clasificado como una teoría del todo y viene de la palabras griegas “vida’ y ‘centro”. Es la creencia de que la vida y la biología son centrales a la realidad y que la vida crea el universo, y no al revés.

Lanza utiliza el ejemplo de la forma en que percibimos el mundo que nos rodea. Una persona ve un cielo azul, y se le dice que el color que están viendo es azul, pero las células en el cerebro de una persona podría ser cambiadas para que el cielo pareciese de color verde o rojo.

En un experimento, cuando los científicos ven pasar partículas a través de dos rendijas, la partícula pasa a través de una ranura a la otra. Pero si ninguna persona lo observa, actúan como una onda y puede ir a través de las dos rendijas al mismo tiempo. Esto demuestra que la materia y la energía pueden mostrarse con características de onda o partícula en base a la percepción y la conciencia de una persona. El espacio y el tiempo son meros instrumentos de nuestra mente.

Al observar el universo desde el punto de vista biocéntrico, esto también significa que el espacio y el tiempo no se comportan de la manera dura y rápida que nuestra conciencia nos dicen que lo hacen. En resumen, el espacio y el tiempo son “meros instrumentos de nuestra mente” y esto implica que la idea de la inmortalidad existe en un mundo sin fronteras de espacio y tiempo. Del mismo modo, los físicos teóricos creen que hay infinidad de universos con diferentes variaciones que tienen lugar al mismo tiempo.

Lanza añade que todo lo que posiblemente puede ocurrir está ocurriendo en algún punto en este multiverso y esto significa la muerte no puede existir en “ningún sentido real”.

“La idea de que la conciencia crea la realidad tiene soporte cuántico … y también es coherente con algunas de las cosas que la biología y la neurociencia nos está informando sobre las estructuras de nuestro ser”, señala Ronald Green, director del Instituto de Ética de la Universidad de Dartmouth, sobre el trabajo de Lanza.

En el siglo XV se afirmaba que si la tierra fuera realmente redonda, entonces la gente de la parte inferior se caerían. El Biocentrismo revoluciona la visión del mundo, volviendo el planeta “patas arriba” otra vez con la visión revolucionaria de que la vida crea el universo en lugar de al revés. Al mismo tiempo, estos hallazgos han aumentado la duda y la incertidumbre acerca de explicaciones físicas tradicionales de la génesis y la estructura del universo.

Robert Lanza es director científico de la compañía Advanced Cell Technology (ACT) y Profesor Adjunto en el Instituto de Medicina Regenerativa de la Universidad de Wake Forest. Ha publicado un libro titulado “Biocentrismo” en dónde detalla sus argumentos tanto de forma convincente como estimulante.

Referencia: Alazul digital

INGENIERÍA EXTRATERRESTRE

Ingeniería Inversa

Nos acercamos al encuentro con formas de vida fuera de la Tierra

Científicos convocados por la Royal Society de Londres señalan que debemos prepararnos para este descubrimiento

Las formas de vida extraterrestre serán detectadas muy pronto gracias a las tecnologías disponibles, por lo que tenemos que estar preparados para las consecuencias de este hallazgo. Ésta es una de las conclusiones a la que han llegado científicos y astrónomos de todo el mundo, reunidos recientemente en un encuentro de la Royal Society de Londres, para discutir cuestiones relacionadas con la vida alienígena. Sus argumentos, aunque parecen sacados de la ciencia ficción, en realidad tienen una base científica y tecnológica. Por Yaiza Martínez.

El pasado 25 y 26 de enero se celebró una conferencia en la Royal Society de Londres en la que se discutieron cuestiones relacionadas con la existencia de vida en otros planetas.

¿Qué aspecto tendrán los extraterrestres si los encontramos?, ¿Se encontrarán formas de vida similares a la nuestra en el espacio exterior o, por el contrario, estas formas de vida serán más parecidas a las que nos ha mostrado en incontables ocasiones la ciencia ficción?, fueron algunas de esas cuestiones.

Bajo el nombre de “The detection of extra-terrestrial life and the consequences for science and society” (La detección de vida extraterrestre y sus consecuencias para la ciencia y la sociedad), la conferencia reunió a los principales astrónomos y científicos de todo el mundo, que intentaron dilucidar, además, qué pasará realmente cuando el ser humano encuentre señales de vida en otros planetas.

Muy cerca

El hallazgo de vida extraterrestre no es una posibilidad remota, aseguran los científicos. Los astrónomos son ya capaces de detectar planetas orbitando alrededor de estrellas lejanas, y en los que podrían existir formas de vida.

Las generaciones que actualmente poblamos la Tierra llegaremos a ver la detección de señales de vida extraterrestre en alguna parte del Universo, aseguran los expertos. ¿Qué pasaría si esto sucediera?

En un comunicado publicado por la Universidad St. Andrews se explica que, ahora más que nunca, la humanidad tiene que prepararse para las consecuencias de un posible encuentro con formas de vida alienígenas.

Según declaró en la conferencia Martin Dominik, de la Escuela de Física y Astronomía de dicha universidad, los rápidos avances alcanzados en las tecnologías de exploración espacial hacen que esta posibilidad sea una posibilidad real.

Dominik afirma: “podría ser que no estuviéramos solos en el universo, lo que afectaría radicalmente la forma en que la humanidad se comprende a sí misma. Tenemos que estar preparados para las consecuencias”.

Técnica clave

Dominik es pionero en la exploración planetaria. De hecho, en 2006, él y su colaborador, Keith Horne, descubrieron el planeta más parecido a la Tierra de los encontrados hasta el momento.

Bautizado como “ OGLE-2005- BLG-390Lb”, este planeta tiene una masa cinco veces mayor que la de la Tierra, y se encuentra a unos 20.000 años luz de distancia, cerca del centro de la Vía Láctea, orbitando alrededor de una estrella más pequeña que el Sol.

Según explicó en 2006 la Universidad St.Andrews en un artículo, este planeta es demasiado frío para contener vida, pero fue encontrado con una técnica denominada de microlente gravitacional, que permite detectar objetos de la masa de un planeta o de la masa de una estrella, independientemente de la luz que éstos emitan.

El hallazgo del OGLE-2005- BLG-390Lb con esta técnica supuso un resultado innovador, clave para la búsqueda posterior de formas de vida extraterrestre.

Alienígenas inteligentes

Por otra parte, en la conferencia de la Royal Society, Lord Rees, Presidente de la Royal Society y Astrónomo Real, afirmó que el descubrimiento de vida extraterrestre podría cambiar a la humanidad para siempre, alterando la visión que tenemos de nosotros mismos y de nuestro lugar en el cosmos.

Según Rees, la tecnología de que se dispone está ya tan avanzada que no sólo podremos detectar planetas no mayores que la Tierra orbitando alrededor de otras estrellas, sino que también seremos capaces de saber si estos planetas tienen continentes y océanos o el tipo de atmósfera que los rodea.

Rees añadió que, si se encontrara alguna forma de vida alienígena, incluso una forma muy simple, en cualquier lugar, nos enfrentaríamos a uno de los mayores descubrimientos del siglo XXI.

El científico señaló tener la sospecha de que hay vida e inteligencia en otros lugares del universo, en formas que nos resultan inconcebibles. Incluso, podría haber formas de inteligencia superiores en capacidad a la inteligencia humana, tan alejadas de ésta como nosotros lo estamos de un chimpancé.

Proyecto SETI

En otra intervención de la conferencia, el profesor Paul Davies, de la Universidad de Arizona, explicó el estado actual y futuro del proyecto SETI, señalando que se necesitan más esfuerzos y flexibilidad para cuestionar las ideas existentes sobre qué forma podría tomar una inteligencia alienígena, cómo podría intentar un ser inteligente extraterrestre contactar con los humanos, y cómo podríamos responder si alguna vez este contacto se produce.

SETI es el acrónimo del inglés Search for ExtraTerrestrial Intelligence, o Búsqueda de Inteligencia Extraterrestre, un proyecto con el se intenta desde hace 15 años encontrar vida extraterrestre inteligente, ya sea por medio del análisis de señales electromagnéticas capturadas en distintos radiotelescopios, o bien enviando mensajes de distintas naturalezas al espacio con la esperanza de que alguno de ellos sea contestado.

Hasta la fecha, no se ha detectado ninguna señal de claro origen extraterrestre, sin incluir la todavía sin definir Señal WOW!. nombre que se le dio a una captación de radio que podría ser el único mensaje recibido hasta la fecha procedente de seres inteligentes alienígenas.

Esta señal fue registrada el 15 de agosto de 1977 por el radiotelescopio Big Ear, y procedía de la zona oeste de la constelación de Sagitario.

Otras técnicas novedosas

En Tendencias21 hemos hablado en otras ocasiones de las tecnologías emergentes en la búsqueda de vida extraterrestre. Por ejemplo, el pasado mes de abril se hizo público que un equipo de investigadores norteamericanos había ideado un novedoso sistema que, basado en el análisis de la “quiralidad” de las moléculas (propiedad que permite saber en qué dirección reflejan éstas la luz), podría introducirse en un futuro en un telescopio gigante o en una sonda espacial para rastrear planetas lejanos para tratar de encontrar “marcas” moleculares que revelen la presencia de vida en dichos planetas.

Por otra parte, el pasado mes de octubre, científicos canadienses revelaron que habían creado un microscopio robusto y sencillo llamado DIHM, destinado a investigar formas de vida extraterrestres en misiones espaciales. En ellas DIHM podría dedicarse a registrar imágenes de cualquier objeto que midiese como mínimo 100 micrómetros.

Por último, en septiembre de 2009, supimos que un equipo de investigadores de la Open University del Reino Unido están creando una nueva ecuación con la que se podrá cuantificar matemáticamente el potencial de un hábitat determinado para albergar vida.

Este “índice de habitabilidad” ayudará a determinar qué lugares de nuestra galaxia podrían ser entornos habitables, es decir, qué planetas disfrutarían de la presencia de un solvente (como el agua), tendrían materiales posiblemente orgánicos, unas condiciones generales benignas y algún tipo de recurso energético.

Fuente: Tendencias21

El Universo – Materia oscura, energía oscura

Materia Oscura y Energía Oscura por Patricia Burchat

El misterio de la materia oscura está a punto de ser descifrado

El satélite Planck registra en el centro de la Vía Láctea una radiación inusual que podría probar la existencia de esta materia

Hace décadas, los físicos predijeron la existencia de la materia oscura por el efecto gravitacional de esta sobre las galaxias. Sin embargo, hasta ahora, la materia oscura solo había sido hipotética, porque no había podido detectarse con los medios tecnológicos disponibles. Ahora, los instrumentos de alta sensibilidad del satélite Planck, que se ocupan de medir la radiación del fondo de microondas de todo el cielo, han detectado por vez primera una radiación única procedente del centro de nuestra galaxia, y que estaría ocasionada por dicha materia. Por Yaiza Martínez.

Los científicos creen que el universo está compuesto de una inmensa cantidad de materia, la materia oscura, que llena el espacio entre las galaxias y entre las estrellas de las galaxias.

La predicción de la existencia de este tipo de materia se realizó hace muchos años: en 1933, fue propuesta por el físico suizo Fritz Zwicky ante la evidencia de una “masa no visible” que influía en las velocidades orbitales de las galaxias en los cúmulos.

A pesar del tiempo que hace de dicha predicción, sin embargo, la materia oscura nunca había dejado de ser hipotética, al no emitir la suficiente radiación electromagnética como para ser detectada con los medios técnicos disponibles.

Y eso a pesar del esfuerzo de todo tipo de investigadores –astrónomos, cosmólogos o físicos especializados en física de partículas- que durante décadas se dedicaron a buscarla. Ahora, la cosa podría haber cambiado.

El satélite Planck da las claves

En 2009, la Agencia Espacial Europea (ESA) lanzó, desde el Puerto espacial de Kourou (en la Guayana Francesa), el satélite Planck, en el marco del programa científico Horizon 2000.

Este satélite fue diseñado para detectar las anisotropías en el fondo cósmico de microondas, es decir, para registrar un tipo de radiación electromagnética, descubierta en 1965, que llena el Universo por completo.

El satélite Planck estaba preparado para realizar esta detección con una resolución y sensibilidad sin precedentes. De hecho, sus últimas observaciones han arrojado resultados sorprendentes.

Gracias a ellos, investigadores del Instituto Niels Bohr de Dinamarca, entre otros científicos, podrían estar más cerca que nunca de solucionar la incógnita sobre el origen de la misteriosa materia oscura.

Los instrumentos de Planck, extremadamente sensitivos y capaces de mapear la radiación de microondas de todo el cielo con gran precisión, han revelado una radiación inusual procedente de nuestra propia galaxia, lo que abre una nueva dirección en la comprensión de las propiedades más fundamentales del espacio, el tiempo y la materia del Universo.

Radiación única en el centro de la galaxia

“Hemos observado una emisión única de radiación procedente del centro de nuestra galaxia, la Vía Láctea. Usando diversos métodos para separar la señal, aplicados a un amplísimo espectro de longitudes de onda, hemos podido determinar el espectro de dicha radiación, y hemos determinado que se origina a partir de emisión sincrotrón, esto es, emisión generada por electrones y positrones que circulan a altas energías alrededor de las líneas del campo magnético del centro de la galaxia. Hay fuertes indicaciones de que esta radiación podría ser ocasionada por la materia oscura”, afirma Pavel Naselsky, profesor de cosmología del Discovery Center del Insituto Niels Bohr de la Universidad de Copenhague, en un comunicado de dicho Instituto.

Naselsky explica que científicos punteros, como el profesor del Instituto Niels Bohr, Subir Sarkar, han predicho, aplicando cálculos, que la materia oscura podría estar formada por partículas muy pesadas, unas 10 veces más pesadas que la partícula Higgs, esto es, 1.000 veces más pesadas que un protón.

Pero estas partículas presentan propiedades únicas y no interactúan con las partículas “normales” del resto de la materia. Además, están normalmente muy dispersas, y tampoco interactúan unas con otras.

“Sin embargo, sabemos, a partir de predicciones teóricas, que la concentración de partículas de materia oscura alrededor del centro de las galaxias es muy alta, y argumentamos que allí pueden colisionar y que en las colisiones son formados los electrones y los positrones. Estos electrones y positrones empiezan a rotar alrededor del campo magnético del centro de la galaxia y, al hacerlo, producen esta radiación de sincrotón tan inusual”, continúa explicando el experto.

Resultados apasionantes para los próximos meses

Hasta ahora, no había sido posible observar esta radiación con tanto detalle, porque los instrumentos existentes no habían tenido la sensibilidad suficiente. Pero con el satélite Planck, esta radiación atípica se distingue con claridad.

Y “no puede ser explicada a partir de los mecanismos estructurales de la galaxia ni puede ser radiación procedente de explosiones de supernovas”.

Por eso Naselsky concluye: “Creo que esta podría ser la prueba de la existencia de materia oscura. De cualquier forma, hemos descubierto un mecanismo absolutamente nuevo (y desconocido para la física) de aceleración de partículas en el centro galáctico”.

El investigador espera nuevos resultados apasionantes para los próximos meses. Los recogidos hasta ahora han aparecido publicados en ArXive.org.

Fuente: Tendencias21

Premio Nobel Otorgado a Investigadores de Física Cuántica

Premio Nobel Otorgado a Investigadores de Física Cuántica

Nobel de física para los pioneros del superordenador cuántico

El francés Serge Haroche y el estadounidense David Wineland reciben el galardón por ser capaces de observar de forma directa partículas cuánticas individuales. Su avance puede permitir que en el futuro se construyan computadores millones de veces más potentes que los actuales

Serge Haroche, de la Escuela Normal Superior de París, en Francia, y David Wineland, del Instituto Nacional de Normas y Tecnología de EEUU en Maryland, han recibido el premio Nobel de Física 2012 por ser capaces de observar de forma directa partículas cuánticas individuales sin destruirlas. Este avance puede permitir que en el futuro se construyan ordenadores cuánticos con una potencia millones de veces superior a la actual y relojes mucho más precisos que los actuales relojes atómicos. No obstante, como ha recordado Haroche en una rueda de prensa posterior al anuncio de los galardones, es muy probable que las aplicaciones con mayor impacto sean distintas de las que ahora parecen evidentes.

El investigador francés y su equipo fueron capaces de observar por primera vez todo el proceso vital de un fotón, desde su nacimiento hasta su muerte. Esta hazaña requirió mantener con vida a la frágil partícula cuántica durante 0,13 segundos, una eternidad nunca alcanzada antes porque la simple observación absorbía y destruía los fotones.

Para capturar los fotones, los científicos construyeron una sofisticada trampa: una caja recubierta de espejos superconductores ultrarreflectantes criogenizados a 0,5 grados por encima del cero absoluto (273 grados bajo cero). Una vez allí, los fotones, que al fin y al cabo son luz, rebotaban entre los espejos y podían ser estudiados antes de desintegrarse. La hazaña que hoy ha premiado la academia sueca es una muestra de que es posible controlar un flujo de bits de información cuántica (qubits) a través del estado cuántico del fotón atrapado.

Esta capacidad es imprescindible para poder construir ordenadores cuánticos. Frente a los ordenadores que utilizan los bits electrónicos para codificar información y que tienen estado 0 o estado 1, los bits cuánticos pueden encontrarse en los dos estados simultáneamente. Controlados, permitirían realizar muchas más operaciones y más rápido que con los ordenadores convencionales.

Por su parte, David Wineland desarrolló un sistema para controlar qubits a través de trampas para iones (átomos cargados eléctricamente). Frente a las trampas habituales, hechas en tres dimensiones como las de Haroche, Wineland diseñó trampas con electrodos de oro en dos dimensiones que podían integrarse en circuitos de cuarzo. Este sistema, mucho más práctico que el anterior, ha hecho más factible la aplicación de la computación cuántica a máquinas cotidianas. Además, estos cepos para iones servirán para construir sistemas de medición del tiempo mucho más precisos que los actuales relojes atómicos, que mejorarían, por ejemplo, los sistemas de GPS.

“Aún hay que recorrer muchos millones de kilómetros hasta contar con un ordenador cuántico, pero este era el primer impulso necesario para desarrollar esta aplicación de la mecánica cuántica en el terreno experimental”, explica el investigador del Instituto de Ciencias Fotónicas (ICFO), Maciej Lewenstein. ”En los últimos años este campo se ha desarrollado de una forma espectacular y ahora somos capaces de crear unos sistemas experimentales con átomos extremadamente fríos, observarlos y medir sus cualidades”, señala Lewenstein. Estos modelos, que son una especie de embriones de computadoras cuánticas, son posibles “porque ahora tenemos mucho control sobre los fenómenos cuánticos”, añade el investigador del ICFO. Este control, que se ha logrado gracias al trabajo de muchos investigadores en todo el mundo, es el que hoy ha sido premiado en Estocolmo.

Fuente: Materia

Teoría Cuántica, una aproximación al universo probable.

La teoría cuántica es un conjunto de nuevas ideas que explican procesos incomprensibles para la física de los objetos.

La Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes. Su marco de aplicación se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica, en la física de nuevos materiales, en la física de altas energías, en el diseño de instrumentación médica, en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. La Teoría Cuántica es una teoría netamente probabilista: describe la probabilidad de que un suceso dado acontezca en un momento determinado, sin especificar cuándo ocurrirá. A diferencia de lo que ocurre en la Física Clásica, en la Teoría Cuántica la probabilidad posee un valor objetivo esencial, y no se halla supeditada al estado de conocimiento del sujeto, sino que, en cierto modo, lo determina.

a Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Se trata de una teoría que reúne un formalismo matemático y conceptual, y recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX, para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes.

Las ideas que sustentan la Teoría Cuántica surgieron, pues, como alternativa al tratar de explicar el comportamiento de sistemas en los que el aparato conceptual de la Física Clásica se mostraba insuficiente. Es decir, una serie de observaciones empíricas cuya explicación no era abordable a través de los métodos existentes, propició la aparición de las nuevas ideas.

Hay que destacar el fuerte enfrentamiento que surgió entre las ideas de la Física Cuántica, y aquéllas válidas hasta entonces, digamos de la Física Clásica. Lo cual se agudiza aún más si se tiene en cuenta el notable éxito experimental que éstas habían mostrado a lo largo del siglo XIX, apoyándose básicamente en la mecánica de Newton y la teoría electromagnética de Maxwell (1865).

“Dos nubecillas”

Era tal el grado de satisfacción de la comunidad científica que algunos físicos, entre ellos uno de los más ilustres del siglo XIX, William Thompson (Lord Kelvin), llegó a afirmar:

Hoy día la Física forma, esencialmente, un conjunto perfectamente armonioso, ¡un conjunto prácticamente acabado! … Aun quedan “dos nubecillas” que oscurecen el esplendor de este conjunto. La primera es el resultado negativo del experimento de Michelson-Morley. La segunda, las profundas discrepancias entre la experiencia y la Ley de Rayleigh-Jeans.

La disipación de la primera de esas “dos nubecillas” condujo a la creación de la Teoría Especial de la Relatividad por Einstein (1905), es decir, al hundimiento de los conceptos absolutos de espacio y tiempo, propios de la mecánica de Newton, y a la introducción del “relativismo” en la descripción física de la realidad. La segunda “nubecilla” descargó la tormenta de las primeras ideas cuánticas, debidas al físico alemán Max Planck (1900).

El origen de la Teoría Cuántica

¿Qué pretendía explicar, de manera tan poco afortunada, la Ley de Rayleigh-Jeans (1899)? Un fenómeno físico denominado radiación del cuerpo negro, es decir, el proceso que describe la interacción entre la materia y la radiación, el modo en que la materia intercambia energía, emitiéndola o absorbiéndola, con una fuente de radiación. Pero además de la Ley de Rayleigh-Jeans había otra ley, la Ley de Wien (1893), que pretendía también explicar el mismo fenómeno.

La Ley de Wien daba una explicación experimental correcta si la frecuencia de la radiación es alta, pero fallaba para frecuencias bajas. Por su parte, la Ley de Rayleigh-Jeans daba una explicación experimental correcta si la frecuencia de la radiación es baja, pero fallaba para frecuencias altas.

La frecuencia es una de las características que definen la radiación, y en general cualquier fenómeno en el que intervengan ondas. Puede interpretarse la frecuencia como el número de oscilaciones por unidad de tiempo. Toda la gama de posibles frecuencias para una radiación en la Naturaleza se hallan contenidas en el espectro electromagnético, el cual, según el valor de la frecuencia elegida determina un tipo u otro de radiación.

En 1900, Max Planck puso la primera piedra del edificio de la Teoría Cuántica. Postuló una ley (la Ley de Planck) que explicaba de manera unificada la radiación del cuerpo negro, a través de todo el espectro de frecuencias.

La hipótesis de Planck

¿Qué aportaba la ley de Planck que no se hallase ya implícito en las leyes de Wien y de Rayleigh-Jeans? Un ingrediente tan importante como novedoso. Tanto que es el responsable de la primera gran crisis provocada por la Teoría Cuántica sobre el marco conceptual de la Física Clásica. Ésta suponía que el intercambio de energía entre la radiación y la materia ocurría a través de un proceso continuo, es decir, una radiación de frecuencia f podía ceder cualquier cantidad de energía al ser absorbida por la materia.

Lo que postuló Planck al introducir su ley es que la única manera de obtener una fórmula experimentalmente correcta exigía la novedosa y atrevida suposición de que dicho intercambio de energía debía suceder de una manera discontinua, es decir, a través de la emisión y absorción de cantidades discretas de energía, que hoy denominamos “quantums” de radiación. La cantidad de energía E propia de un quantum de radiación de frecuencia f se obtiene mediante la relación de Planck: E = h x f, siendo h la constante universal de Planck = 6’62 x 10 (expo-34) (unidades de “acción”).

Puede entenderse la relación de Planck diciendo que cualquier radiación de frecuencia f se comporta como una corriente de partículas, los quantums, cada una de ellas transportando una energía E = h x f, que pueden ser emitidas o absorbidas por la materia.

La hipótesis de Planck otorga un carácter corpuscular, material, a un fenómeno tradicionalmente ondulatorio, como la radiación. Pero lo que será más importante, supone el paso de una concepción continuista de la Naturaleza a una discontinuista, que se pone especialmente de manifiesto en el estudio de la estructura de los átomos, en los que los electrones sólo pueden tener un conjunto discreto y discontinuo de valores de energía.

La hipótesis de Planck quedó confirmada experimentalmente, no sólo en el proceso de radiación del cuerpo negro, a raíz de cuya explicación surgió, sino también en las explicaciones del efecto fotoeléctrico, debida a Einstein (1905), y del efecto Compton, debida a Arthur Compton (1923).

Marco de aplicación de la Teoría Cuántica

El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. De manera que la Teoría Cuántica se extiende con éxito a contextos muy diferentes, lo que refuerza su validez.

Pero, ¿por qué falla la teoría clásica en su intento de explicar los fenómenos del micromundo? ¿No se trata al fin y al cabo de una simple diferencia de escalas entre lo grande y lo pequeño, relativa al tamaño de los sistemas? La respuesta es negativa. Pensemos que no siempre resulta posible modelar un mismo sistema a diferentes escalas para estudiar sus propiedades.

Para ver que la variación de escalas es un proceso con ciertas limitaciones intrínsecas, supongamos que queremos realizar estudios hidrodinámicos relativos al movimiento de corrientes marinas. En determinadas condiciones, podríamos realizar un modelo a escala lo suficientemente completo, que no dejase fuera factores esenciales del fenómeno. A efectos prácticos una reducción de escala puede resultar lo suficientemente descriptiva.

Pero si reducimos la escala de manera reiterada pasaremos sucesivamente por situaciones que se corresponderán en menor medida con el caso real. Hasta llegar finalmente a la propia esencia de la materia sometida a estudio, la molécula de agua, que obviamente no admite un tratamiento hidrodinámico, y habremos de acudir a otro tipo de teoría, una teoría de tipo molecular. Es decir, en las sucesivas reducciones de escala se han ido perdiendo efectos y procesos generados por el aglutinamiento de las moléculas.

De manera similar, puede pensarse que una de las razones por las que la Física Clásica no es aplicable a los fenómenos atómicos, es que hemos reducido la escala hasta llegar a un ámbito de la realidad “demasiado esencial” y se hace necesario, al igual que en el ejemplo anterior, un cambio de teoría. Y de hecho, así sucede: la Teoría Cuántica estudia los aspectos últimos de la substancia, los constituyentes más esenciales de la materia (las denominadas “partículas elementales”) y la propia naturaleza de la radiación.

Cuándo entra en juego la Teoría Cuántica

Debemos asumir, pues, el carácter absoluto de la pequeñez de los sistemas a los que se aplica la Teoría Cuántica. Es decir, la cualidad “pequeño” o “cuántico” deja de ser relativa al tamaño del sistema, y adquiere un carácter absoluto. Y ¿qué nos indica si un sistema debe ser considerado “pequeño”, y estudiado por medio de la Teoría Cuántica? Hay una “regla”, un “patrón de medida” que se encarga de esto, pero no se trata de una regla calibrada en unidades de longitud, sino en unidades de otra magnitud física importante denominada “acción”.

La acción es una magnitud física, al igual que lo son la longitud, el tiempo, la velocidad, la energía, la temperatura, la potencia, la corriente eléctrica, la fuerza, etc., aunque menos conocida. Y al igual que la temperatura indica la cualidad de frío o caliente del sistema, y la velocidad su cualidad de reposo o movimiento, la acción indica la cualidad de pequeño (cuántico) o grande (clásico) del sistema. Como la energía, o una longitud, todo sistema posee también una acción que lo caracteriza.

Esta acción característica, A, se obtiene de la siguiente multiplicación de magnitudes: A = P x L, donde P representa la cantidad de movimiento característica del sistema (el producto de su masa por su velocidad) y L su “longitud” característica. La unidad de esa “regla” que mencionábamos, con la que medimos la acción de los sistemas, es la constante de Planck, h. Si el valor de la acción característica del sistema es del orden de la constante de Planck deberemos utilizar necesariamente la Teoría Cuántica a la hora de estudiarlo.

Al contrario, si h es muy pequeña comparada con la acción típica del sistema podremos estudiarlo a través de los métodos de la teoría clásica. Es decir: Si A es del orden de h debemos estudiar el sistema según la Teoría Cuántica. Si A es mucho mayor que h, podemos estudiarlo por medio de la Física Clásica.

Dos ejemplos: partículas y planetas

Veamos dos ejemplos de acción característica en dos sistemas diferentes, aunque análogos:

1. El electrón orbitando en torno al núcleo en el nivel más bajo de energía del átomo de hidrógeno.

Vamos a calcular el orden de magnitud del producto P x L. P representa el producto de la masa del electrón por su velocidad orbital, esto es P = 10 (exp-31) (masa) x 10 (exp 6) (velocidad) = 10 (exp-25) (cantidad de movimiento). El valor característico de L corresponde al radio de la órbita, esto es, L = 10 (expo-10) (longitud). Realizamos ahora el producto P x L para hallar la magnitud de la “acción” característica asociada a este proceso: A1 = Px L = 10 (expo-25) x 10 (expo-10) = 10 (expo-35) (acción).

2. El planeta Júpiter orbitando en torno al Sol (consideramos la órbita circular, para simplificar).

Para este segundo ejemplo, realizamos cálculos análogos a los anteriores. Primeramente la cantidad de movimiento P, multiplicando la masa de Júpiter por su velocidad orbital: P = 10 (expo 26) (masa) x 10 (expo 4) (velocidad) = 10 (expo 30) (cantidad de movimiento). Igualmente, la longitud característica será la distancia orbital media: L = 10 (expo 11) (longitud). La magnitud de la acción característica en este segundo caso será: A2 = 10 (expo 30) x 10 (expo 11) = 10 (expo 41) (acción).

Si comparamos estos dos resultados con el orden de magnitud de la constante de Planck tenemos:

h = 10 (expo-34)
A1 = 10 (expo -35)
A2 = 10 (expo 41)

Vemos que para el caso 1 (electrón orbitando en un átomo de hidrógeno) la proximidad en los órdenes de magnitud sugiere un tratamiento cuántico del sistema, que debe estimarse como “pequeño” en el sentido que indicábamos anteriormente, en términos de la constante de Planck, considerada como “patrón” de medida. Al contrario, entre el caso 2 (Júpiter en órbita en torno al Sol) y la constante de Planck hay una diferencia de 75 órdenes de magnitud, lo que indica que el sistema es manifiestamente “grande”, medido en unidades de h, y no requiere un estudio basado en la Teoría Cuántica.

La constante de Planck tiene un valor muy, muy pequeño. Veámoslo explícitamente:

h = 0’ 000000000000000000000000000000000662 (unidades de acción)

El primer dígito diferente de cero aparece en la trigésimo cuarta cifra decimal. La pequeñez extrema de h provoca que no resulte fácil descubrir los aspectos cuánticos de la realidad, que permanecieron ocultos a la Física hasta el siglo XX. Allá donde no sea necesaria la Teoría Cuántica, la teoría clásica ofrece descripciones suficientemente exactas de los procesos, como en el caso del movimiento de los planetas, según acabamos de ver.

Breve cronología de la Teoría Cuántica

1900. “Hipótesis cuántica de Planck” (Premio Nobel de Física, 1918). Carácter corpuscular de la radiación.

1905. Einstein (Premio Nobel de Física, 1921) explica el “efecto fotoeléctrico” aplicando la hipótesis de Planck.

1911. Experimentos de Rutherford, que establecen el modelo planetario átomo, con núcleo (protones) y órbitas externas (electrones).

1913. Modelo atómico de Niels Bohr (Premio Nobel de Física, 1922). Tiene en cuenta los resultados de Rutherford, pero añade además la hipótesis cuántica de Planck. Una característica esencial del modelo de Bohr es que los electrones pueden ocupar sólo un conjunto discontinuo de órbitas y niveles de energía.

1923. Arthrur Comptom (Premio Nobel de Física, 1927) presenta una nueva verificación de la hipótesis de Planck, a través de la explicación del efecto que lleva su nombre.

1924. Hipótesis de De Broglie (Premio Nobel de Física, 1929). Asocia a cada partícula material una onda, de manera complementaria a cómo la hipótesis de Planck dota de propiedades corpusculares a la radiación.

1925. Werner Heisenberg (Premio Nobel de Física, 1932) plantea un formalismo matemático que permite calcular las magnitudes experimentales asociadas a los estados cuánticos.

1926. Erwin Schrödinger (Premio Nobel de Física, 1933) plantea la ecuación ondulatoria cuyas soluciones son las ondas postuladas teóricamente por De Broglie en 1924.

1927. V Congreso Solvay de Física, dedicado al tema “Electrones y fotones”. En él se produce el debate entre Einstein y Bohr, como defensores de posturas antagónicas, sobre los problemas interpretativos que plantea la Teoría Cuántica.

1928. Experimentos de difracción de partículas (electrones) que confirman la hipótesis de de Broglie, referente a las propiedades ondulatorias asociadas a las partículas. El fenómeno de difracción es propio de las ondas.

1932. Aparición del trabajo de fundamentación de la Teoría Cuántica elaborado por el matemático Jon von Neumann.

Aspectos esencialmente novedosos de la Teoría Cuántica

Los aspectos esencialmente novedosos (no clásicos) que se derivan de la Teoría Cuántica son:

a) Carácter corpuscular de la radiación (Hipótesis de Planck).

b) Aspecto ondulatorio de las partículas (Hipótesis de Broglie).

c) Existencia de magnitudes físicas cuyo espectro de valores es discontinuo. Por ejemplo los niveles de energía del átomo de hidrógeno (Modelo atómico de Bohr).

Implicaciones de a): carácter corpuscular de la radiación.

Tradicionalmente se había venido considerando la radiación como un fenómeno ondulatorio. Pero la hipótesis de Planck la considera como una corriente de partículas, “quantums”. ¿Qué naturaleza tiene, entonces, la radiación: ondulatoria o corpuscular? Las dos. Manifiesta un carácter marcadamente “dual”. Se trata de aspectos que dentro del formalismo cuántico no se excluyen, y se integran en el concepto de “quantum”.

El quantum de radiación puede manifestar propiedades tanto corpusculares como ondulatorias, según el valor de la frecuencia de la radiación. Para valores altos de la frecuencia (en la región gamma del espectro) predomina el carácter corpuscular. En tanto que para frecuencias bajas (en la región del espectro que describe las ondas de radio) predomina el aspecto ondulatorio.

Implicaciones de b): carácter ondulatorio de las partículas.

Se comprobó en experimentos de difracción de electrones y neutrones. Lo que ponen de manifiesto estos experimentos es que una clase de onda acompaña el movimiento de las partículas como responsable del fenómeno de difracción. De manera que nuevamente tenemos un ejemplo de dualidad entre las propiedades corpusculares y ondulatorias, asociadas en este caso a las partículas.

Pero la aparición del fenómeno ondulatorio no se produce únicamente a nivel microscópico, también se manifiesta para objetos macroscópicos, aunque en este caso la onda asociada tiene una longitud de onda tan pequeña que en la práctica es inapreciable y resulta imposible la realización de un experimento de difracción que la ponga de manifiesto.

Implicaciones de c): existencia de magnitudes físicas discontinuas.

Pone de manifiesto el carácter intrínsecamente discontinuo de la Naturaleza, lo que se evidencia, como ejemplo más notable, en el espectro de energía de los átomos. A partir de la existencia de estas discontinuidades energéticas se explica la estabilidad de la materia.

Mario Toboso (autor del artículo) es Doctor en Ciencias Físicas por la Universidad de Salamanca y miembro de la Cátedra Ciencia, Tecnología y Religión de la Universidad Pontificia Comillas.

Fuente: Tendencias21